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Summary

This document describes the models that will produce forecasts of the rate-of-change of the
horizontal components of the local geomagnetic field in South Sweden based on ACE real time
solar wind data. Both the north-south (∆X) and east-west (∆Y ) directions are considered.

It is clear that predicting ∆H = (∆X,∆Y ) with one minute resolution is with current knowl-
edge impossible. Therefore, we motivate the use of temporal root-mean-square (RMS) ∆H
formed over 10 minute intervals. A resolution of 10 minutes has been found to be a good
trade off between high resolution and accurate forecasts. The optimal forecast lead time is
30 minutes and the correlation between model output and observed log RMS ∆H is approxi-
mately 0.80. The models forecast the 10-minute RMS ∆X and ∆Y at Brorfelde (BFE: 11.67◦E,
55.63◦N),Denmark, and Uppsala (UPS: 17.35◦E, 59.90◦N), Sweden.

The magnetic field variations ∆H is interpolated over a dense grid covering South Sweden using
an equivalent ionospheric current model. Based on the interpolated ∆H the electric field and
thus the geomagnetic induced currents may be calculated for any given location. We show that
the interpolated 10-minute RMS ∆H may be estimated from the two locations BFE and UPS.
Therefore, the prediction model can be generalised to arbitrary locations.

Finally, we provide a linear model relating RMS ∆H at Brorfelde, Denmark, and Uppsala,
Sweden, to RMS GIC at a single location. There is also a close linear relation between RMS
GIC and MAX GIC, where the latter is the maximum GIC in a 10 minute interval. This is
useful as an estimate of the maximum GIC that will occur.
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Abbreviations and symbols

ACE Advanced Composition Explorer

ANN Artificial Neural Network

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

ETM Exponential Trace Memory

GIC Geomagnetically Induced Current

MODWT Maximum Overlap Discrete Wavelet Transform

TN Technical Note

URD User Requirements Document

WP Work Package

∆X one minute time difference of the north-south local geomagnetic field
∆X(t) = X(t + 1) − X(t)

∆Y one minute time difference of the east-west local geomagnetic field
∆Y (t) = Y (t + 1) − Y (t)

∆H means ∆X and/or ∆Y

µ mean

RMS root-mean-square

σ standard deviation
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Real-time forecast service for geomagnetically induced currents 1

1 Introduction

This document describes a module for direct solar wind – dH/dt prediction that shall be a
part of the GIC Pilot Project. The requirements have been identified in the User Requirements

Document (Wintoft et al., 2003). The purpose of the project is described in the URD as:

The space weather refers to conditions on the Sun and in the solar wind, mag-
netosphere, ionosphere, and thermosphere that can influence the performance and
reliability of space-borne and ground-based technological systems, and can endanger
human life and health. The space weather can at times induce currents in electrical
power grids generally known as GIC (geomagnetically induced currents).

The purpose of this project is to provide a software package that can be used for
realtime forecasting of GIC in the Swedish power grid. The software shall be used
by power grid operators and tested for a one-year period. During this period, the
accuracy and reliability of the software shall be determined, and the usefulness of
the software shall be formulated through a cost-benefit analysis. Another aspect is
the need to educate the public and decision makers of the potential hazards of GIC
and how forecasts can help to mitigate the effects. Thus, the software shall also have
a public part.

Our approach to develop a forecast model for GIC is illustrated in Figure 1. With the use of
solar wind data and local geomagnetic field data neural networks are trained to predict the
root-mean-square (RMS) ∆X and ∆Y , or short RMS ∆H. In real time operation only the solar
wind data are needed. Based on the forecasted RMS ∆H forecasted GIC may be computed
with two different methods. In the first approach, the forecasted RMS ∆H is used as input
to a general model for the calculation of GIC (Viljanen et al., 2005). In addition the model
also needs the ground conductivity and power grid layout. In the second approach an empirical
linear model is developed that predicts the GIC directly from predicted ∆H. It is then possible
to explore the difference between the two techniques and to identify the weakest link.

2 The data

A database has been set up as described in the TN of WP 200. Here we make a short summary
of the data that are used in this TN.

2.1 Solar wind data

The solar wind plasma and magnetic field data comes in two different temporal resolutions
(Wintoft et al., 2004): 16 second sampling of the magnetic field, and 64 second sampling of the
plasma. Both the GIC and the geomagnetic data have 60 second resolution. The real-time solar
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Figure 1: The diagram shows the data flow from the solar wind to the forecasted GIC. The solid
boxes represent the part of the model used in real time operation, while the dashed boxes are
only necessary during model development. The complete model consists of both parts marked
in black and grey. This document addresses the part in black.
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wind data at SEC1 are also given with 60 second resolution, where the plasma data have been
resampled from 64 seconds to 60 seconds. However, resampling the data introduces artificial
frequencies that result in differences between longer temporal averages formed from the 64- and
60-second time series. E.g., forming 5-minute averages from the 64- and 60-second data may
result in occasional differences of more than 8 cm−3 in the density and more than 20 km/s in
the velocity. Thus, resampling the data from 64 seconds to 60 seconds should be avoided for the
analysis and model development.

2.2 Local geomagnetic field

We select observed geomagnetic from Brorfelde (11.67◦E,55.63◦N) and Uppsala (17.35◦E,59.90◦N)
as these sites are closest to the region of Sweden we currently shall study. As stated in WP 300
(Viljanen et al., 2005) the prime quantity to use when calculating GIC is the time derivatives of
the horizontal magnetic field components dX/dt and dY/dt. The derivatives are approximated
using the forward difference

∆X(t) = X(t + 1) − X(t), (1)

where t is in minutes and X is the north-south horizontal magnetic field component. Similarly
we have

∆Y (t) = Y (t + 1) − Y (t), (2)

east-west component.

2.3 Interpolated geomagnetic field in a dense grid

The method to interpolate the geomagnetic field in a dense grid over South Sweden in described
in Viljanen et al. (2005). The interpolated data consist of the magnetic field components (X,Y )
with one minute resolution equidistantly distributed in 1◦ steps in longitude from 11◦ to 18◦,
and in 0.5◦ steps in latitude from 55◦ to 60◦, giving in total 8 × 11 = 88 points.

2.4 GIC data

The recorded GIC data covers three periods: 1998-09-17 – 10-28, 1999-08-15 – 11-14, and 2000-
01-22 – 08-13. The first period has very few data gaps, while for the last two periods it has been
stated that data has only been collected when GIC> 1 Ampere.

1http://www.sec.noaa.gov/ftpdir/lists/ace/
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3 Analysis

3.1 A case study – September 1998

On 24 September 1998 the Earth’s magnetosphere was hit by a strong solar wind shock with
southward magnetic field (Figure 2). The shock reached ACE at L1 at 23:15 UT and about 30
minutes later the effect could be seen in ∆X and ∆Y . The increase in ∆X is sudden going from
3 nT/min to the peak value of 54 nT/min in one minute at 23:45 UT. The increase in ∆Y is
more gradual going from 0 nT/min, through -7, -17, and reaching the peak value after 3 minutes
of -41 nT/min at 23:47 UT. The strongest peaks in ∆X and ∆Y occur on 25 Sep. around 06:46
with peak values of 123 and 83 nT/min, respectively. There are data gaps in the BFE data at
06:44 and 06:45.
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Figure 2: The panels show from top to bottom: solar wind magnetic field component Bz; solar
wind velocity V ; geomagnetic field fluctuations ∆X at BFE; and geomagnetic field fluctuations
∆Y at BFE.
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3.2 Auto-correlation

The auto-correlation for T = 2-minute average solar wind and ∆X show very different charac-
teristics. The velocity V has an auto-correlation close to 1 for time lags ranging from 0 to 40
minutes. Thus, two measurements of V separated by 40 minutes are most of the time close to
equal. Only for occasional shocks there might be a big difference in V (t) and V (t + 2). Simi-
larly, the density n is also highly correlated with a correlation of almost 0.9 at 40 minutes. The
magnetic field component Bz has an auto-correlation that drops of quicker, but it is still above
0.6 at 40 minutes lag. Finally, the auto-correlation of ∆X is close to 0 for all time lags, thus it
is not possible to predict ∆X(t + τ) from ∆X(t) with a linear model, for any τ ≥ 2 minutes.

3.3 Wavelet variance – estimating the spectral density of ∆X and ∆Y

Using a discrete wavelet transform (DWT) the ∆X can be decomposed into signals, called
details and smooth (or approximation), that are associated with different scales, where the scale
corresponds to a wavelength band. The decomposed signals can thus be thought of being a band
pass filtered versions of ∆X. The DWT preserves the power in the signal but it is not time
invariant, i.e. the DWT of a time shifted ∆X is not equal to the time shifted DWT of ∆X. To
ensure time invariance we use a modified DWT, called the Maximum Overlap DWT (MODWT)
(?). But with the MODWT the sum of the power of the smooth and details are not equal to
the power in ∆X. However, the power is preserved in the wavelet coefficients.

We apply the MODWT using the Daubechies wavelet of order 4 on one-minute ∆X for all data
in 1998 resulting in the wavelet coefficients Wj,t (details) and Vt (smooth), where the level is
j ∈ [1, 7] and time is t ∈ [0, 525599]. Level j is associated with scale

τj = 2j−1. (3)

As the time resolution is one minute the scale is also in minutes. The variance, or power, at
level j is

ν2
j =

∑

t

W 2
j,t (4)

and the power conservation means that

∑

t

∆X2
t =

∑

j

ν2
j +

∑

t

V 2
t . (5)

The signal at level j is associated with frequencies in the range

fj ∈

[

1

2j+1
,

1

2j

]

=

[

1

4τj
,

1

2τj

]

. (6)

Thus, if we compute the power spectrum S(f) of ∆X with the Fourier transform then the
wavelet variance

ν2
j ≈ 2

∫ 1/2j

1/2j+1

S(f)df (7)
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where the factor 2 in front of the integral comes from the fact the S(f) exist for f ∈ [−1/2, 1/2]
and is symmetrical around f = 0. In Figure 3 (left) the estimated power spectrum from the
MODWT and the DFT are shown (top panel). We see that there is a close agreement between
the two estimates. The power in ∆X is concentrated to small scales (high frequencies), which
becomes more clear in the two lower panels. The relative power (bottom left panel) is for the
first four scales: 32%, 25%, 18%, and 13%. The cumulative relative power (bottom right panel)
is 88% using only the wavelet coefficients up to level 4. This is in agreement with our previous
conclusion that we need the one-minute data to capture the variance in ∆X. We also see that
almost 90% of the signal is found at scales of τ4 = 24−1 = 8 minutes corresponding to frequencies
higher than 1/32 min−1.
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Figure 3: The figure to the left shows the spectral density, or power spectrum, for ∆X normalised
with the variance of ∆X. The labels have the following meaning: ”All data”, all data in 1998;
”Storm data”, use only one-day periods that contain events where ∆X > 20 nT/min; ”SDF
from FFT”, estimate using a Fourier transform. The figure to the right spectral density for ∆Y .

We repeat the same analysis for ∆Y at Brorfelde, and the result is shown in Figure 3 (right).
The spectrum is more flat up to level 4 after which the power decreases rapidly (top panel). The
storm time spectrum has a shape similar to the general spectrum (bottom left) and the relative
power for the first 4 levels are: 26%, 20%, 19%, and 18%. The four levels together capture 83%
of the power and at level 5 it goes over 90% (bottom right).

3.4 Geomagnetic field and GIC

The GIC data consist of measurements of currents flowing through a transformer neutral. The
GIC may result from two different sources: space weather induced and non-space weather in-
duced. To explore this we compute the linear correlation between the rate-of-change of the
East-West component of the geomagnetic field dX/dt and the GIC. A time lag is introduced
between dX/dt and GIC, and the both unfiltered and filtered GIC are used. For the filtering
the DB1 wavelet is used. The wavelet approximation A and detail D are related to the original
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signal GIC as

GIC = A1 + D1 = A2 + D2 + D1 = Al +

l
∑

n=1

Dn, (8)

where l is the level. The filtered GIC at level l is computed as

GICl =

{

GIC l = 0
∑l

n=1 Dn l > 0
(9)

where Dn is the detail at level l. The signal Al contains only periods longer than 2l minutes
and thus GICl is the high frequency component with periods shorter than 2l minutes. In
Figure 4 we show the correlation between the Brorfelde (BFE) data and the filtered GIC data
for the period 1998-09-17 to 1998-10-28. The maximum correlation is reached at a time lag of
2 minutes and filtering level 5. This means that there is a slowly varying component in GIC
(period> 25 = 32 minutes) that is not related to dX/dt. The same analysis is repeated for
Upsala (UPS) and the result is shown in Figure 4. The maximum correlation is now found at a
time lag of 3 minutes and filtering level 7, corresponding to 27 = 128 minutes.
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Figure 4: Correlation between dX/dt from Brorfelde (BFE), and Uppsala (UPS), and the GIC
data for different levels and time lags. The level is the wavelet filtered GIC data at the corre-
sponding level, where level 0 means unfiltered data.

We now set the filtering level to 6, which corresponds to 64 minutes, and look at the filtered
GIC data. Two example periods are shown in Figures 5 and 6. In the top panels are shown
a 24-hour interval around 1998-08-25 and 1998-10-18, respectively. In the bottom panels are
shown a close-up covering 3 hours. The two examples have quite different characteristics. The
first example (Figure 5) contains strong GIC reaching above 50 A. It is difficult to see any
difference between the raw GIC and the filtered GIC in the top panel. In the bottom panel
the differences becomes visible. The second example (Figure 6) is a much calmer period with
maximum GIC of 12 A. However, there is a clear bias of 5-6 A in the raw GIC that is removed
in the filtered GIC. For the whole period, 1998-09-17 to 1998-10-28, the raw GIC has a mean
value of 1.22 A and a standard deviation of 2.2 A, while the filtered GIC has a mean of 0 and a
standard deviation of 1.8 A.
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Figure 5: The figure shows the unfiltered (thick line) and filtered (thin line) GIC time series
over a 24-hour period (top panel) during 24–25 Sep. 1998. An enlarged part is shown in the
bottom panel covering three hours.
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panel covering three hours.
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The shift of 2 to 3 minutes between the geomagnetic data and the GIC data is at the moment
unexplained. It could be due to different time stamping in the different sets. However, it is not
crucial in this work as we will use 10 minute data.

The occasional bias term in the GIC is probably related to changes in the power grid configu-
ration affecting the GIC measurements. Again, as we will use 10 minute data, and especially
variances of the data, any bias term will be removed in the process. This will be discussed in
the next section.

3.5 Time series of 10-minute RMS ∆X and RMS ∆Y

To be able to develop a forecast model of the geomagnetic field the one-minute ∆X and ∆Y
need to be resampled to a lower time resolution. As already mentioned, any temporal averaging
of ∆X is not meaningful because of the weak auto-correlation. Therefore, we will instead study
the level of disturbance in ∆X and its relation to the solar wind. In the paper by Weigel et al.

(2002) models where developed for the coupling from the solar wind to 30 minute averages of
the absolute value |∆X|. However, taking the average of |∆X| a large fraction of the variance
is lost. This can be seen by computing the variance of the 10 minute average µ|∆X| of |∆X| and
comparing it to the variance of ∆X

σ2(µ|∆X|)

σ2(∆X)
= 0.55 (10)

which means that only about 55% of the variance is captured. The low explained variance is
an effect of that most of the power in ∆X is located at small scales as found from the wavelet
analysis. If we instead form the 10-minute root-mean-square of ∆X the explained variance
increases to

σ2(RMS∆X)

σ2(∆X)
= 0.82. (11)

Another interesting feature with RMS, or MS, is that it is related to the variance of the wavelet
coefficients via Equation 5 so that the power distribution can be estimated from RMS ∆X
(Wintoft , 2005).

4 Forecast models of RMS ∆X and RMS ∆Y using neural net-

works

Here we describe the neural network model for the prediction of the 10-minute RMS ∆X and
∆Y at Brorfelde and Uppsala.
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4.1 10-minute resolution data

As described in Section 4.2 we will use data with 10 minute resolution in the forecast model.
First we have the 10-minute average as

µ(s) =
1

10

10s+9
∑

t=10s

x(t). (12)

The average captures quite well the dynamics in the solar wind. Another quantity that is
interesting is the standard deviation

σ(s) =

√

√

√

√

1

9

10s+9
∑

t=10s

(x(t) − µ(s))2 (13)

as this is related to turbulence and strong gradients that are not seen in the average. Finally,
we also have the root-mean-square (RMS) value

r(s) =

√

√

√

√

1

10

10s+9
∑

t=10s

x2(t) (14)

which is related to the power in the signal. The solar wind data are resampled using the average
and standard deviation where x(t) is replaced by Bz, n, and V . The rate-of-change of the
local geomagnetic field is resampled using the RMS where x(t) is replaced with ∆X and ∆Y at
Uppsala and Brorfelde.

4.2 Temporal averages and the relation to prediction lead time

Assume we have a variable x(t) that is collected with a sampling interval ∆t resulting in the
time series xi. The corresponding time stamp ti marks the beginning of the interval so that xi

is the average of x(t) over the interval t ∈ [ti, ti+1] where ti+1 = ti + ∆t. Similarly, we may have
another variable y(t) sampled to yi. If we now wish to develop a model that predicts y from x
with some lead time τ we have ŷ(t + τ) = f(x(t)), where ŷ is the prediction of y. This leads to
the discrete model

ŷi+n = f(xi) (15)

where τ = n∆t.

To understand the true forecast time assume that the current time is t0. The latest input is x−1

that has been collected over the time interval [t−1, t0]. With a forecast time of τ = n∆t we will
thus be forecasting yn−1 resulting in a true forecast time of τ ′ = τ −∆t. In order for the model
to perform actual forecasts we must have ∆t ≤ τ .

In the case of solar wind – magnetosphere coupling, part of the lead time is associated with
the solar wind travel time from L1 to Earth. In Figure 7 the travel time is shown for velocities
in the range [300, 1000] km/s. If we only consider velocities up to 830 km/s then it is possible
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to make forecasts of 30 minutes. The ACE 2-minute average velocity exceeds 830 km/s in 27
events for the period 1998 to current, and the maximum velocity is 980 km/s corresponding to
a travel time of 25 minutes. Thus, using a 30 minutes forecast lead time will capture most of
the events, and for higher velocities the lead time will be shifted by mostly 5 minutes.
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Figure 7: The figure shows the prediction lead time as a function of velocity as measured at L1.
The straight lines marks the velocities at lead times of 30 and 60 minutes, respectively.

The ACE spacecraft is not located exactly on the Sun-Earth line but is on an orbit around L1.
Therefore, the spacecraft does not measure the solar wind directly upstream from the Earth
which will introduce uncertainties on the time of arrival and evolution of solar wind structures
(Wintoft et al., 2005). Temporal averaging will reduce the uncertainties and a resolution of
∆t = 10 minutes is a good trade-off leading to a true forecast time of 30 − 10 = 20 minutes.

4.3 Architecture

The neural network takes solar wind data and time as input and predicts the log r. Four
different models are developed that predicts rX,BFE , rY,BFE, rX,UPS, and rY,UPS, respectively.
The inputs are 10 minute averages and standard deviations. The inputs are collected into the
input vector

X = [d1, d2, l1, l2, µBz, σBz , µn, σn, µV , σV ] = [X1, . . . ,X10] , (16)

where

[d1, d2] =

[

sin
2πDOY

365
, cos

2πDOY

365

]

(17)

are the sine and cosine of the day-of-year (DOY),

[l1, l2] =

[

sin
2πLT

24
, cos

2πLT

24

]

(18)
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are the sine and cosine of the local time (LT), and the µ• and σ• are the mean and standard
deviation of the solar wind data. The inputs are then normalised according to

xi =
Xi − ai

bi
(19)

where

a = [0, 0, 0, 0, 0, 0.92, 8.0, 0.61, 490, 4.6] (20)

b = [2.1, 2.1, 2.1, 2.1, 18, 3.6, 24, 3.1, 320, 15]. (21)

The normalisation constants have been chosen so that the mean of xi is approximately 0, and
the standard deviation is approximately 0.3. The neural network can now be written as

ŷ(t + τ) = f(x(t), NH) (22)

where τ is the prediction time, NH the number of hidden neurons, and ŷ is the network output.
To capture the dynamics in the system we use internal feed-back units. The weights in network
f are then adjusted so that the error between the desired output y and the network output ŷ is
minimised. The desired output is the normalised log r according to

y =
log r − α

β
. (23)

The normalising constants are for the four different models are shown in the table below.

Table 1: The normalising constants for the four models.

Model α β

BFE ∆X 0.064 1.2
BFE ∆Y -0.0079 1.2
UPS ∆X 0.020 1.4
UPS ∆Y -0.062 1.3

4.4 Training and optimisation

The solar wind data and ground magnetic field data are extracted from the five year period
1998–2003. Only events during which r(t) reach above a certain threshold are selected, and all
the events are sorted in r. Then the set is split into three independent data sets by selecting every
third event. This results in about 15 000 data points in each set, and where each set has similar
mean and standard deviation. The three sets are used for training, validation, and testing.
The training set is used for the weight adjustment, the validation set is used to determine the
optimal network, and the test set is used to test the network. The input data are normalized
to cover approximately the range ±1 and the output is log-normalized. The neural network can
be summarized as

log ri(t + τ) = fi(x(t)) (24)
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where log ri is the output and τ is the prediction horizon. The goal of the training procedure is
to the change the free parameters (weights) of f so that the squared error (log ri(t)− log ri(t))

2

is minimized. The network function f contains input units, hidden units, context units, and an
output unit. The units are connected with weights, and each hidden and output unit has a bias.
The context units contain a delayed copy of the hidden units that are fed back into the hidden
units; this is the recurrent layer. To a first approximation, the recurrent layer is an exponential
trace memory, where the weights represents the decay terms. Thus, the context units contain
the memory of the system.

The weights are initialised to small random values and then the network is trained. Typically,
both the training set error and the validation set error decrease during the first part of the
training phase as the network adjusts to general features in the data. Then, as training continues
the training error still decreases, while the validation error may occasionally increase passing
through several local minima. Finally, the validation error just continues to grow while the
training error still decreases. The values of the weights at which the network reached the
deepest validation minimum is considered to be the optimal weights. During the first phase the
network adjusts to general features in the data, then it picks out more detailed features but also
starts to adjust to the noise in the data, and then finally the network continues to adjust to the
remaining noise. By monitoring the progress of the validation set error we can thus find the
optimal network.

A large number of networks with different architectures are trained to predict log ri, and the
optimal network is determined using the validation set. The initial network is fully connected
and has 10 inputs, nh hidden units, nc = nh context units, and one output. As the output unit
and each hidden unit also has a bias the total number of weights is n = 10nh+nh+ncnh+nh+1 =
1 + 12nh + n2

h. The number of hidden units is varied over nh = 2, 3, 4, 5, 6 giving networks with
n = 29, 46, 65, 86, 109 weights.

Starting with the model for the RMS ∆X at Uppsala we see that the maximum correlation is
obtained for a network with nh = 5 hidden units (Figure 8, upper left plot). The confidence
limits are shown at the 95% level. In computing the correlation and confidence limits we use
all three data sets: training set, validation set, and test set. There are almost 40 000 data
points but the autocorrelation in both the observed series and the predicted series do not fall
off to zero quickly. Therefore the effective number of independent observations (??) is reduced
by a factor of about 35 giving slightly more than 1000 independent points. In Figure 8 the
horizontal line indicates the level at which the correlation is significantly lower than the highest
correlation. This means that all models with a correlation above the line perform equally well,
but any model falling below the line performs significantly poorer. Thus, it can be seen that
there is a significant increase in the correlation going from 2 hidden units to 3 hidden units, and
increasing the number of hidden units has very little (or no) effect. Similar results are obtained
for UPS ∆Y , and BFE ∆X and ∆Y .
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Figure 8: The figure shows the correlation coefficients C(log r, log r) for networks with different
number of weights and biases. The error bars indicates the 95% confidence levels. The solid
curve connected with diamonds corresponds to the fully connected networks with 2,3,4,5 and 6
hidden units. The labels along the dashed curve show which input that has been removed.

4.5 Prediction errors

The models have been developed to predict the log of the RMS ∆B (r). The results given in
Figure 8 show the correlation coefficients. The root-mean-square errors (ERMS) for the models
are to a first approximation independent of r and equal to 0.2. Scaling back to real values
the constant error in log data will transform into an error that scales linearly with the output.
The errors together with the 68% (1-σ) and 95% (2-σ) confidence limits are shown in Figure 9.
The values in brackets give the range of possible output values at the given confidence levels.
For example the predicted output for UPS ∆X has a range of [0.55, 1.78] at the 1-σ level. This
means that 68% of the true output vales will lie in the range [0.55r, 1.78r] where r is the predicted
10-minute RMS ∆X at Uppsala.
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Figure 9: The four figures show the predicted output versus the observed output (yellow dots)
for the four models. The computed 68% (1-σ) and 95% (2-σ) confidence limits are shown in
blue and magenta, respectively. The dashed lines are the 68% and 95% limits assuming that the
errors scales linearly with the predicted output.

4.6 Pruning

It is interesting to see which inputs that have an influence on the model. It is not possible to
merely look at the strengths of the weights to judge which inputs are of importance. Instead
each weight must be removed and the change in performance monitored. For large networks
there are more efficient ways to achieve this in which the second derivative of the error with
respect to the weights are computed Le Cun et al.. But as the network used here is quite
small we may simply remove one input at a time and compute the change in error. Before the
error is computed the network is additionally trained for a few iterations so that the remaining
weights may be altered to compensate for a possible change in bias. The initial network is fully
connected with 10 inputs and 5 hidden units. When one input is removed the total number of
weights is decreased by 5. After removing one input at a time we will have a set of 10 different
models each having 9 inputs. The model with the highest correlation is chosen from the set
to be used for continued pruning. The process is repeated until there is only one input unit
left. The network pruning results in the change in correlation according to the points connected



16 WP400 TN, Iss: 0, Rev: 4, 23 December 2005

with dashed lines in Figure 8. Each label indicate which input that has been removed. The
procedure is repeated for Uppsala ∆Y , and Brorfelde ∆X and ∆Y . For all models the following
inputs have no influence: sine and cosine of the year, standard deviations of Bz and velocity
V , and density n. Then there are some differences between the models. In both Uppsala and
Brorfelde the ∆X-models show a weak dependence on the cosine local time (CLT). Looking at
the local time distribution of ∆X it follows a cosine function with a maximum around noon
and a minimum around midnight . Further pruning reveals that the most important inputs,
ordered in increasing importance, are Bz, σn, and V . Now studying the ∆Y -models we note
that there is a weak coupling to sine local time instead of cosine. Again, looking at the local time
distribution there is a maximum in the morning sector that can be described by a sine curve,
however, the distribution in the afternoon sector does not follow the sine shape, instead it levels
out showing no variation in local time. Ordering the remaining inputs in increasing importance
we find σn, V , and Bz. Apart from the difference in local time distribution, there also seems to
be a difference in the coupling to the solar wind between ∆X and ∆Y . The two most important
parameters for ∆X are V and σn, and they are related to pressure variations in the solar wind
that compress the dayside magnetopause. This is also consistent with the local time variation
seen in ∆X. On the other hand, for ∆Y the two most important parameters are Bz and V that
may be interpreted to be more linked to the reconnection process at the magnetopause causing
sub-storms and storms.

4.7 Increasing the prediction horizon

As previously mentioned the prediction lead time is 30 minutes. We may examine if it is possible
to increase the lead time without degrading the performance of the model. We increase the lead
time in steps, with continued training of the network, and compute the correlation. It turns out
that the correlation for both ∆X and ∆Y monotonically decreases, even though we may extend
the lead time to 70-90 minutes before it becomes significantly poorer. However, the ∆X-model
shows a steeper decrease in correlation than the ∆Y -model. This is consistent with the finding
above that solar wind pressure variations are more important for ∆X than ∆Y , and that the
substorm process dominates the ∆Y variations. The magnetopause current responds directly
to solar wind pressure changes so the only available lead time is the L1–Earth travel time. On
the other hand there is additional time delays before the substorm develops after the southward
turning of Bz.

4.8 Generalisation to interpolated RMS ∆X and RMS ∆Y

Models have been developed that predicts the RMS ∆X and RMS ∆Y at BFE (Brorfelde) and
UPS (Uppsala). However, for the general situation we should be able to predict the RMS values
for any location in South Sweden. This can be obtained by developing similar models but that
includes the longitude and latitude at the input, and using the RMS of computed interpolated
magnetic field as the target output. However, in this work we choose a slightly simpler approach.

Studying the spatial variation of interpolated RMS ∆X and RMS ∆Y during the 24-25 Septem-
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Figure 10: The figure shows the linear correlation between observed and predicted RMS ∆X
and RMS ∆Y at UPS as a function of prediction lead time. The error bars indicate the 95%
confidence interval.

ber 1998 events it is seen that at any given instant of time the values lie on a rather smooth
surface. Assuming a certain shape of the surface, so that it can be described with two parame-
ters, then the values at BFE and UPS can be used to determine the two parameters. We apply
principal components analysis (PCA) (?) on the interpolated RMS data. Using only the first
principal component (PC) 96% of the variance in RMS ∆X is captured, and with two PCs more
than 99 % of the variance is captured. For RMS ∆Y the 1st PC captures more than 98% of the
variance, and the first two PCs more than 99% of the variance.

To conclude, it is thus possible to a high degree of accuracy to compute the 10-minute RMS ∆X
and RMS ∆Y at any location in the grid using only data from BFE and UPS. Therefore, the
forecast models developed for BFE and UPS can be applied also for the locations in the grid.

5 Forecasting GIC

5.1 Single site empirical model from RMS ∆X and RMS ∆Y

The GIC flowing between the transformer neutral and the ground has been measured at a
location in South Sweden. The measurements have been carried out for a number of periods
during the years 1998 to 2000 and the data set consists of almost 100 000 one minute samples
Kronfeldt (2002). The measured GIC ranges from -269 A to 195 A. As previously stated, with
knowledge about the power grid layout and the ground conductivity the GIC may be computed
from the time derivative of the horizontal magnetic field Viljanen et al. (2003). Therefore, we
expect to find a correlation between the MS ∆X and ∆Y (r2), and the MS GIC (g2). Using a



18 WP400 TN, Iss: 0, Rev: 4, 23 December 2005

10
0

10
1

10
2

10
0

10
1

10
2

RMS GIC (A)

Li
ne

ar
 m

od
el

 (
A

)

Figure 11: The figure shows a correlation plot between the 10 minute RMS GIC from the linear
model and the measured 10 minute RMS GIC. The two curves marks the ±5 Amp. error.

least squares fit between r2 and g2 we find

ĝ2 = (0.47 + 0.15r2
1 + 0.08r2

2 + 0.15r2
3 + 0.05r2

4) A2, (25)

where r1 = RMS(∆XBFE), r2 = RMS(∆YBFE), r3 = RMS(∆XUPS), and r4 = RMS(∆YUPS).
The correlation between g2 and ĝ2 is 0.929 ± 0.015 at the 95% confidence level, taking into
account the autocorrelation in the time series (??). In Figure 11 the RMS GIC from the linear
model is plotted against the measured RMS GIC. The high correlation of the single site empirical
linear model indicates that it should be possible to compute the RMS GIC at other locations
and for other power grid configurations using the RMS ∆X and ∆Y as inputs.

5.2 General GIC model from interpolated RMS ∆X and ∆Y

In the previous sections we have developed models that predict the 10-minute RMS ∆X and
∆Y at two locations in southern Scandinavia (Borfelde and Uppsala) using solar wind data as
input. An empirical model was also developed that relates the RMS ∆X and ∆Y at the two
locations to RMS GIC at a single site given the power grid layout at that time. In WP 300 it is
discussed how the models for calculating GIC at any location for a given power grid layout can
be modified to use RMS ∆X and ∆Y instead of one-minute X and Y to be able to handle the
more general situation.
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6 Example predictions

In Figures 12 to 17 predictions are shown of selected events from the event list (Wintoft et al.,
2004). In each figure the three most important input parameters are shown together with the
forecasts for the north-south and east-west magnetic field fluctuations at the two locations. The
solar wind data are Bz magnetic field component, standard deviation σn of the particle density,
and velocity V . The four bottom panels show the observed (blue) and predicted (red) RMS ∆X
and ∆Y at Brorfelde and Uppsala. Each figure covers 24 hours and the temporal resolution is
10 minutes.

Each period typically starts from quiet conditions with Bz and σn close to zero, and constant
velocity. Then, in all cases, the geomagnetically disturbed period is preceded by a sudden
increase in velocity (solar wind shock). The lead time is 30 minutes or more due to the location
of ACE at L1. At the shock there is an increase in σn which continues to be disturbed for several
hours. There is, however, no relation between the magnitude of σn and the magnitude of V .
This temporal evolution is the result of a passage of a coronal mass ejection (CME) which start
with a shock with a embedded complex structure. The magnetic field component Bz displays
also large degree of variance during the CME passage and sometimes it evolves like a magnetic
cloud with Bz turning positive (negative), then negative (positive), and then back to zero.

The predicted RMS ∆H (red curve) follows well the large scale variation of the observed RMS
∆H (blue curve) whereas the small scale variation is not predicted. The onset time of a disturbed
period is usually correctly predicted, however, the predicted rise time is often lower.
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Figure 12: The figure shows from top to bottom the solar wind magnetic field component Bz,
standard deviation of the particle density n, the velocity V , the RMS ∆X and RMS ∆Y at
Brorfelde (BFE), and the RMS ∆X and RMS ∆Y at Upsala (UPS). All data have a temporal
resolution of 10 minutes. Observed data are shown with blue lines and predicted with red lines.
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Figure 13: The figure shows from top to bottom the solar wind magnetic field component Bz,
standard deviation of the particle density n, the velocity V , the RMS ∆X and RMS ∆Y at
Brorfelde (BFE), and the RMS ∆X and RMS ∆Y at Upsala (UPS). All data have a temporal
resolution of 10 minutes. Observed data are shown with blue lines and predicted with red lines.
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Figure 14: The figure shows from top to bottom the solar wind magnetic field component Bz,
standard deviation of the particle density n, the velocity V , the RMS ∆X and RMS ∆Y at
Brorfelde (BFE), and the RMS ∆X and RMS ∆Y at Upsala (UPS). All data have a temporal
resolution of 10 minutes. Observed data are shown with blue lines and predicted with red lines.
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Figure 15: The figure shows from top to bottom the solar wind magnetic field component Bz,
standard deviation of the particle density n, the velocity V , the RMS ∆X and RMS ∆Y at
Brorfelde (BFE), and the RMS ∆X and RMS ∆Y at Upsala (UPS). All data have a temporal
resolution of 10 minutes. Observed data are shown with blue lines and predicted with red lines.
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Figure 16: The figure shows from top to bottom the solar wind magnetic field component Bz,
standard deviation of the particle density n, the velocity V , the RMS ∆X and RMS ∆Y at
Brorfelde (BFE), and the RMS ∆X and RMS ∆Y at Upsala (UPS). All data have a temporal
resolution of 10 minutes. Observed data are shown with blue lines and predicted with red lines.
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Figure 17: The figure shows from top to bottom the solar wind magnetic field component Bz,
standard deviation of the particle density n, the velocity V , the RMS ∆X and RMS ∆Y at
Brorfelde (BFE), and the RMS ∆X and RMS ∆Y at Upsala (UPS). All data have a temporal
resolution of 10 minutes. Observed data are shown with blue lines and predicted with red lines.
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